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Abstract—Federated learning (FL) has gained substantial at-
tention as a promising solution to the need for client privacy
in mobile edge computing (MEC). However, FL suffers from
instability of accuracy because of the invalid clients who become
stragglers caused by frequent fluctuation of available resources
in MEC. To tackle the challenge, most of the frameworks of
asynchronous FL allow the parameter server (PS) to sched-
ule clients reasonably. This kind of central server-determining
paradigm makes it difficult to select all potentially useful clients
because their resources in MEC vary frequently. In this paper,
we proposed a new semi-asynchronous FL framework with
a self-determining mechanism. This kind of framework fully
exploits useful local models to improve global accuracy. Our
proposed system has the following notable properties. Firstly,
since clients perceive their resource status, thereby the self-
determining clients can autonomously determine by themselves
whether to participate in FL training according to the resource
status. Secondly, compared the experimental results with other
baselines, our proposed framework significantly improves the
average global test accuracy.

Index Terms—Federated Learning, Self-Determining, Mobile
Edge Computing

I. INTRODUCTION

Federated learning (FL) is a distributed machine learning
paradigm where a number of clients train a global model
collaboratively following the orchestration of a central pa-
rameter server without sharing their local private data [1]–[4].
As the most famous FL framework, FedAvg [3] applies data
parallelism mode of training to train a data-hungry large model
based on the increasing mountains of client data [2].

There are three main phases in the synchronous FL [4],
including Selection Phase, Local-Training Phase, and Re-
porting Phase. In the synchronous FL, the parameter server
(PS) and all clients follow the 3 phases mentioned above. In
Selection Phase, the PS selects several clients and assigns
the global model to them. Then, in Local-Training Phase,
clients that are selected by PS receive the global model and
start local training. Finally, in Reporting Phase, clients upload
local updates to the parameter server. When the PS aggregates
local models, the global model update is complete for a round
of training. Such a classical learning paradigm seems simple
but works. However, FL faces some technical challenges. For
example, some devices (i.e., clients) in the MEC environment
are not able to afford computing-intensive tasks [5] due to
the resource-limited MEC environment; those mobile devices
might fail to upload their local updates in Reporting Phase
due to their mobility.

Although client devices can keep in contact with the PS
by exploiting the 5G/B5G network [6], the biggest problem is
how to ensure the availability of the resource-limited mobile
clients in the MEC environment consisting of highly dynamic
uncertainties [7]. These dynamic uncertainties can be caused
by the frequent changes of client resources, mainly referring
to the computing power of devices and the stability of the net-
work connection. Such uncertainties can lead to the following
two kinds of clients: (a) the slow clients, also called stragglers,
that fail to complete their training tasks before the specific
deadline; and (b) the invalid clients that lose contact with the
parameter server [1]. The absence of those unavailable clients
aggravates clients’ drift and degrades the global accuracy of
FL [8].

To conquer the problem of the hysteresis above of decision-
making, non-synchronous protocols including asynchronous
FL [9], [10] and semi-asynchronous FL [11], [12] have been
proposed. For the semi-asynchronous FL, the PS follows a se-
ries of certain phases but clients just manage themselves with-
out any phases. In this paper, we classify semi-asynchronous
FL into two phases for the PS, i.e., Local-Training Phase
and Global Update Phase. Firstly, in Local-Training Phase,
clients can request the latest global model from the server,
then start their local training and upload the local updates
when finished. In contrast, the PS in Local-Training Phase
just keeps the locally updated model in the cache and should
not perform aggregation. In Global Update Phase, the PS
stops both distributing the global model and receiving the local
updates as well, so that it concentrates on aggregation for
a new global model. Meanwhile, clients are still allowed to
participate in local training based on the previously received
global model.

The major contributions of our study in this paper can be
summarized as follows.

• We propose a new FL framework that can improve the
global test accuracy of the semi-asynchronous FL in MEC
by applying a self-determining mechanism instead of cen-
tralized selection. We then provide a detailed analysis of
the advantages in the aspect of convergence performance.

• The experimental results show that our proposed frame-
work outperforms other baselines in terms of converged
performance.
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TABLE I
SYMBOLS AND NOTATIONS

K the size of all FL rounds. ∀k ∈ [K], k denotes round ID.

N the number of all clients. ∀i ∈ [N ], i denotes client ID.

S(Mk, k) the set of candidates with the size Mk at round k.

ζi,k current network connection quality of client i at round k

ϑi,k current computing capability of client i at round k

di,k currently-observed download rate of client i at round k.

ui,k currently-observed upload rate of client i at round k.

γi,k currently-observed available memory of client i at round k.

ψi,k currently-observed CPU frequency of client i at round k.

ϕi,k currently-observed remaining battery of client i at round k.

Ωi,k current status [γi,k , ψi,k , ui,k , di,k , ϕi,k , ζi,k , ϑi,k].

Di the set of raw data owned by client i.

yk global model of which the version is k (i.e., at round k).

xi,k local model learned by participant i in round k.

τi,k Staleness of a local update from client i at round k.

τmax Maximum of tolerance of staleness for local updates.

Td(k) a fixed value that represents the time span of an FL round.

χi,k
a binary variable that indicates whether client i participates
in FL or not at round k.

II. SYSTEM DESIGN

A. Problem Formulation

The major symbols and notations used in this paper are
given in Table I. This section formulates the problem that
we study for semi-asynchronous federated learning. We define
Fi,k(xi,k) (where i ∈ [N ] and k ∈ [K]) to denote the loss
value of local model xi,k, and f(xi,k; di,j) denote the loss
value of each step of gradient descent while utilizing the data
sample di,j ∈ Di. Then, Equation (1) shows the loss function
of client i ∈ [N ] at round k ∈ [K].

Fi,k(xi,k) =
1

|Di|
∑

di,j∈Di

f(xi,k; di,j),∀i ∈ [N ], k ∈ [K].

(1)
Then, the local model update of client i at round k is written
as

xi,k+1 = xi,k − η∇Fi,k(xi,k), ∀i ∈ [N ], k ∈ [K], (2)

where η denotes learning rate and ∇Fi,k(xi,k) denotes the
gradient at round k ∈ [K]. According to the local loss func-
tion Equation (1), the global loss function and the objective
function of FL are defined as

Fk(yk) =
1∑

i∈SM
k

|Di|
∑
i∈SM

k

|Di|Fi,k(xi,k),∀k ∈ [K], (3)

min
k∈[K]

F (yk)− F (y∗), (4)

where |Di| denotes the size of the local dataset of client i ∈
[N ], and y∗ denotes the optimal global model whose loss value
is zero (i.e., the ground-truth labels). Note that, SMk denotes
the set of FL participants consisting of a number M(∈ N+)
of clients at round k ∈ [K]. Equation (3) also represents the
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Fig. 1. System Overview. The self-determining FL consists of the server and
the client. Clients make their own decision on whether to participate in FL
training according to their current-observed resource status Ωi,k .

aggregation of local updates, after which the global Model
Update is performed referring to the following equation

yk+1 = yk − η∇Fk(yk),∀k ∈ [K], (5)

where yk denotes the global model at round k, η denotes
the learning rate, and ∇Fk(yk) denotes the global gradient
calculated by global loss function defined in Equation (3).

B. System Overview

This subsection shows the design principles of the system,
including the brief introduction and coordination of modules.
Figure 1 shows that the proposed system consists of 2 main
roles, the parameter server (PS) and the client.

• Parameter Server (PS) is a central station for global
model updates. Especially, the PS follows the pattern of
“selection-after-training” [12] by filtering out the local
updates of large staleness.

• Client is the basic computing unit of the so-called
distributed machine learning in the proposed system. A
self-determining client autonomously decides whether to
participate in the FL training. After local training, clients
report their local updates to the PS.

Figure 1 shows the collaboration between PS and clients
in the proposed self-determining FL. According to the afore-
mentioned modules as shown in Figure 1, a client’s scheduler
sends its local update to PS after local training. Then, the
model transfer module in PS received model updates and put
them into the cache for aggregation.

The information included in the local update is saved into
a database by the coordinator module. Meanwhile, the coor-
dinator is also able to filter out some less useful local models
according to the statistical information (e.g., models with large
staleness). After the filtration, the aggregation module starts
to aggregate local models, and the global update is finished
for this round of training.

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big 
Data

1007



Se
le

ct
o

r
A

gg
re

ga
to

r

A
ggregato

r

Server Determine VS Self Determine

clients that fail to
complete local-training

clients that successfully
complete local-training

upload/download model
(self-determining protocol)

upload/download model
(server-determining protocol)

a client that participates in FL
(self-determining protocol)

a client selected by central server
(server-determining protocol)

Fig. 2. Comparison between server-determining protocol and self-determining
protocol.

The whole coordination between the PS and the clients is
in the reporting phases in FL training. Though PS specifies
a fixed deadline and synchronizes the global model after the
deadline for each round, each client in the coordination is
asynchronous. Consequently, we can classify the clients into
fast, normal, slow (i.e., straggler), and invalid clients. In the
proposed system, PS doesn’t identify the type of clients, it
only needs the statistical information in their local updates.

C. Self-determining FL

We utilize Figure 2 to illustrate the comparison between
the server-determining mechanism and the proposed self-
determining mechanism. The self-determining mechanism en-
ables clients to schedule themselves according to their ef-
ficiency of training. In Figure 2, a cloud represents the
parameter server. Mobile phones with a green check mark
represent fast clients or normal clients that complete local
training in time. Mobile phones with red cross marks represent
invalid slow clients that are not able to complete local training
in an FL round. Some invalid clients lost contact because of
bad network connection quality.

The core protocol in our proposed system is different from
the synchronous FL. At the beginning of the FL round,
the PS broadcasts a one-bit start signal to all clients. Then,
clients autonomously observe the current resource status and
compare the status information with its historical statistics.
The comparison results help clients decide whether to start a
local training or not.

After that, some clients execute local training and upload
their updates to PS while others fail. The clients that fail to
complete local updates become stragglers and wait for the next
Local-Training Phase. Some of the clients that lost contact are

Algorithm 1: Self-Determining FL
Input : y0 (y0 is the initialized global model),

{S(Mk, k) ∈ [N ]} (S(Mk, k) is the
candidates set for round k ∈ [K], Mk is the
size of S(Mk, k) for round k ∈ [K]).

Output: The final global model yk, k ∈ [K].
1 Initialize k← 0
2 while F (wk)− F (w∗) > ϵ do
3 k ← k + 1
4 Sends yk−1 to participants SMk
5 repeat
6 Asynchronous local-training based on yk−1

7 PS Receives xi,k, τi,k from participant i (local
model and staleness info)

8 if τi,k > τmax then
9 Drops the update and notifies client i

10 continue;

11 Saves τi,k into database
12 Pushes xi,k into the aggregation cache
13 until deadline Td(k) is met;
14 yk ← Updates global model by Equation (5)

15 return the final global model yk, k = K

regarded as invalid clients. The number of rounds that a client
i has postponed uploading its updates is recorded as a value
of staleness τi,k, i ∈ [N ], k ∈ [K]. If some of the stragglers
still fail to complete their local updates within the tolerance
of staleness, they will also turn into invalid clients and restart
in the next FL round. In this case, all clients hold their own
"timeline" in parallel.

At the end of an FL round, the PS broadcasts a one-bit
termination signal to all clients and then starts to aggregate
those collected updated models. Moreover, the PS can filter
out those models with poor quality according to statistical
information (τi,k, ∀i ∈ [N ], k ∈ [K]) in the local updates
reported by clients.

The following paragraph introduces the details of collabora-
tion between the parameter server and self-determining clients.

As mentioned in Section II-B, the parameter server in
the proposed self-determining protocol is only an auxiliary
station for model aggregation. According to Algorithm 1, the
parameter server initializes and sends the global model yk to
clients who request it at the beginning of round k ∈ [K].
Then the PS repeats the FL rounds until the loss of the global
model converges. Note that, the PS keeps listening to the local
updates uploaded from clients until the end of Local-Training
Phase. If the staleness τi,k of the local update is larger than
the predefined threshold, the PS drops the model and notifies
the relevant client. In Global Update Phase, the aggregator of
the PS updates the global model by Equation (5).

According to Algorithm 1, clients in the proposed protocol
start the Local-Training Phase when receiving the start signal
ai,k (i ∈ [N ], k ∈ [K]), from the PS. Each client i (∈ [N ])
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Fig. 3. Accuracy of CNN/Linear Model trained based on MNIST using I.I.D or Non-I.I.D. settings.
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Fig. 4. Accuracy of CNN/Linear Model trained based on EMNIST using I.I.D or Non-I.I.D. settings.

0 25 50 75 100 125 150 175 200
FL Rounds

0

20

40

60

80

T
es

t A
cc

ur
ac

y 
(%

)

StandAlone

FedAvg

FedCS

FedSA

Our Proposed

(a) Acc. of CNN (I.I.D.)

0 25 50 75 100 125 150 175 200
FL Rounds

0

20

40

60

80

T
es

t A
cc

ur
ac

y 
(%

)

StandAlone

FedAvg

FedCS

FedSA

Our Proposed

(b) Acc. of CNN (Non-I.I.D.)

0 25 50 75 100 125 150 175 200
FL Rounds

0

10

20

30

40

50

60

70

80

T
es

t A
cc

ur
ac

y 
(%

)

StandAlone

FedAvg

FedCS

FedSA

Our Proposed

(c) Acc. of Linear (I.I.D.)

0 25 50 75 100 125 150 175 200
FL Rounds

0

10

20

30

40

50

60

70

80

T
es

t A
cc

ur
ac

y 
(%

)

StandAlone

FedAvg

FedCS

FedSA

Our Proposed

(d) Acc. of Linear (Non-I.I.D.)

Fig. 5. Accuracy of CNN/Linear Model trained based on Fashion-MNIST using I.I.D or Non-I.I.D. settings.

observes the resource status Ωi,k (i ∈ [N ], k ∈ [K]) at round k.
Then, the scheduler in the client makes a decision on whether
to participate in the current FL training or not.

III. PERFORMANCE EVALUATION

A. Experiment Settings

1) Testbed and Evaluation: We have implemented the
system as an emulator for the semi-asynchronous FL using
PyTorch 1.10.0 [13]. We have established a testbed where
the server is equipped with a CPU of Intel(R) Xeon(R) W-
2150B, 64 GB memory, and one GPU of NVIDIA GeForce
RTX 3080 Ti with 12 GB memory. Furthermore, we developed
an Android APP named Data Tracer and recruited around 100
volunteers to collect devices’ routine and resource status data.

2) Models and Datasets: For the training models, we chose
the Linear Model and CNN model [3]. The Linear Model is
composed of 3 linear layers with 512 units, and each layer
is activated by a ReLu function. For the training datasets,
we applied MNIST [14], EMNIST [15], Fashion-MNIST [16],
and CIFAR-10 [17] to the FL training. And we followed the

Dirichlet distribution (CD = 1.0) for the Non-I.I.D. local
datasets, where D denotes the global dataset.

3) Baselines: We conducted the experiments and evaluated
the performances of our proposed framework as well as 4
baselines including Stand Alone, FedAvg [3], FedCS [18] and
FedSA [11].

4) Hyper Parameter: In the synchronous FL, there are K(=
200) of FL rounds and a total of N(= 100) clients for local
training. Only a number M(≤ N) of clients participate in local
training in a single FL round. For the semi-asynchronous FL,
τmax(= 3) denotes the tolerance of staleness of local updates
from stragglers.

B. Convergence of Aggregated Model at FL Server

We evaluated the global accuracy of each method and the
results are shown in Figure 3, Figure 4, and Figure 5. The
subfigures of the aforementioned figures represent accuracies
on different datasets (EMNIST, Fashion-MNIST, and MNIST).
For the analysis of convergence performance, we applied
the Linear Model and CNN model as the training models
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with three datasets including EMNIST, Fashion-MNIST, and
MNIST.

We can see in these subfigures that the proposed system
outperforms other baselines based on the CNN/Linear Model
and different data settings. Moreover, our proposed system
achieves higher accuracy while ensuring the stability of con-
vergence in the resource-limited MEC environment. It should
be mentioned that the inflection points of convergence of
FedSA and the self-determining FL are significantly faster than
those of other baselines with synchronous protocols.

These experimental results indicate that the number of
rounds to required accuracy is lower and the convergence
speed is faster. For detailed analysis, Stand Alone achieves
the lowest accuracies because it doesn’t update the global
model by aggregating local models. FedAvg achieves not bad
accuracies in Figure 3(d) compared with FedCS, but accuracies
in Figure 4(d) and Figure 5(d) are not promising because of
the larger and more complicated datasets.

In summary, our proposed system converges faster and
achieves the highest and most stable accuracy out of all
methods. In most cases, FedCS and FedSA achieve higher
accuracies than FedAvg. However, FedAvg achieves almost
the same average accuracy as FedCS in Figure 3(a) and Figure
4(a). This observation indicates that the improved synchronous
protocols (e.g., FedCS) are only able to tackle partial cases
of FL training. The accuracy gap between FedAvg and the
improved synchronous protocols can be narrowed because
of the combined impact of datasets, models, and system
heterogeneity. Nevertheless, our proposed system achieves the
best accuracy in all the above cases of settings.

C. Analysis of Utilization of Local Model
The most important advantage of self-determining protocols

is the utilization of local models of all valid clients. As is men-
tioned above, we can observe in Figure 3, Figure 4 and Figure
5 that the self-determining system achieves a promising global
test accuracy in FL training. According to the settings in the
experiments, the proposed self-determining system utilizes all
potentially valid clients and these clients successfully upload
the local updates to the server. Constitutionally, compared with
baselines, the self-determining FL gets more training for the
global model per unit of time.

IV. CONCLUSION

We propose a self-determining framework, aiming to im-
prove the global test accuracy of non-synchronous FL. In
our proposed framework, clients determine themselves so that
the FL system can tackle the frequent changes of resources
in MEC. Compared with other state-of-the-art baselines, our
proposed framework achieves higher accuracy. In summary,
our proposed system is a promising approach for a large-scale
FL in MEC.
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