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Abstract—Bayesian optimization has been used for the global 

optimization of communication parameters of Vehicular Ad 

Hoc Networks (VANETs) for safety applications with stringent 

quality of service (QoS) requirements. However, the 

effectiveness of the methodology relies on an accurate analytic 

model for querying a distribution over functions, which is not 

practical. Furthermore, incorporating QoS requirements as 

constraints into the search process is cumbersome, time-

consuming, and even unreliable. In this paper, we present a new 

approach to the constrained Bayesian optimization of IEEE 

802.11 based VANETs for safety messaging with the help of 

deep learning neural networks (DLNNs). First, we design and 

train a DLNN using data collected from the analytic models or 

channel measurements to approximate a mapping from the 

search parameter space to the QoS metrics. The QoS constraints 

are naturally incorporated into the DLNN through 

preprocessing data pairs that cannot meet the QoS 

requirements. Then, the Bayesian optimization is conducted to 

find the optimal communication parameters for the best 

channel usage on the condition that all QoS requirements are 

met. Accordingly, experiments are carried out on the Google 

Colab platform where the impact of DLNN structure, data 

sampling rate, and other optimization parameters are 

investigated. In comparison to other optimization approaches, 

utilizing a DLNN in the Bayesian optimization process is more 

time efficient and flexible. 

Keywords— Bayesian Optimization, Ad hoc networks, Deep 

Learning Neural Networks, Quality of Service, Safety  

I. INTRODUCTION 

Road safety of vehicles and autonomous vehicles can be 

potentially improved by deployment of Vehicular Ad Hoc 

Networks (VANETs) through which vehicles are able to 

communicate with each other and be aware of other vehicles 

and road conditions via exchanging safety related messages. 

The IEEE 802.11 based communication system with recently 

upgraded technologies such as higher speed modulation and 

coding schemes (MCS), high channel bandwidth, etc., is one 

of two candidates for Vehicle to Everything (V2X) safety 

applications. Since the vehicular communication 

environments and traffic change very frequently, and the 

different safety applications require different quality of 

service (QoS) requirements, delivering safety messages with 

fixed communication parameters could cause poor QoS or 

low channel efficiency. It is natural to develop optimization 

schemes to dynamically adjust communication parameters 

for high efficiency of channel usages based on the 

observation of communication channels and road traffic.  

Some valuable studies have been proposed [1] [2]. 

However, the optimization schemes proposed in these studies 

can only adjust one or two parameters, and are 

computationally expensive, resulting in the lack of real-time 

optimization capability required for real vehicle operations. 

Since vehicular communication systems are very complex 

systems that cannot be characterized by simple models, it is 

hard to apply many existing gradient-based optimization 

algorithms to find the best solutions within a reasonable time 

duration. Bayesian optimization is an effective approach for 

non-gradient, model-based, global optimization of random 

black-box functions [3], [4] which allows balanced 

extrapolation and interpolation in the search process.   

Recently, a Bayesian optimization scheme was proposed to 

optimize the parameters of IEEE 802.11 based VANET in 

real-time for vehicular safety applications [5]. However, the 

optimization scheme needs to run the computationally 

expensive analytic function in each iteration of the 

optimization, causing the constraint incorporation process via 

the introduction of the probability magnitude that the target 

sampling point meets the QoS requirements to be very time 

consuming and potentially unreliable.  

To overcome the shortcomings of the existing schemes, 

this paper proposes a new constrained Bayesian optimization 

of IEEE 802.11 based VANETs for safety messaging that 

uses deep learning neural networks (DLNNs) to improve 

time efficiency and reliability. First, a DLNN is introduced 

and configured to realize a mapping from the communication 

parameter space which covers the parameters of the network 

information transmission rate, MCS index, the number of 

message repetitions and communication transmission power, 

to QoS metrics, which includes Channel Busy Rate, Packet 

Reception Probability, and Packet Transmission Delay. All 

data collected from either the analytic models or real channel 

measurement are sorted according to the QoS requirements. 

In other words, the DLNN is trained by constrained data that 

modifies the values that do not meet QoS requirements such 

that they will not be optimal values. This is done to ensure 

that the optimal value chosen by the optimization meets the 

QoS requirements. Then, the DLNN replaces the analytic 

model and is involved in the Bayesian optimization algorithm 

to search the parameter set that minimizes the channel usage 

or maximizes the channel efficiency. The low computational 

cost and generalization capabilities of DLNNs help improve 

the accuracy and speed of the search.  

Compared with the previous Bayesian optimization 

methods for VANETs, the main contributions of this paper 
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are: 1) The proposed scheme introduces a DLNN as an 

alternative of the analytic model in the Bayesian 

Optimization algorithm. This new approach makes 

incorporating constraints into the optimization simpler and 

more efficient without any changes in the Bayesian 

Optimization. 2) The algorithm of DLNN based Bayesian 

Optimization is implemented and compared with other 

optimization algorithms in terms of convergence speed, 

optimization precision, and optimization reliability that will 

facilitate real-time optimization of the VANETs.  

The paper is organized as follows. Section II gives a brief 

overview of IEEE 802.11 based VANETs for safety 

messaging and optimization problem formulation. Section III 

describes the new DLNN based Bayesian Optimization 

scheme and how it is implemented. Section IV shows the 

numerical results of the proposed scheme and discusses them. 

Section V presents the conclusions and future research 

possibilities of this scheme. 

II. SYSTEM MODEL FOR VANET SAFETY SERVICES  

A. Description of 802.11based VANET for BSM Services 

   VANETs powered by the IEEE 802.11 communication 

system are utilized to deliver safety services via one-hop or 

multi-hop broadcasting, which disseminate real-time traffic 

information or safety-related messages. The PHY layer of the 

communication system utilizes Orthogonal Frequency 

Division Multiplexing (OFDM) operating in the licensed 5.9 

GHz frequency band with bandwidths ranging from 5 MHz 

to 160 MHz. The introduction of Low-Density Parity Check 

(LDPC) error-correction coding in the PHY layer provides a 

sensitivity gain of 2~3 dB and increased spectral efficiency 

compared to the Binary Convolutional Code (BCC) for 

channel coding. The system with channel tracking using 

midamble symbols sustains higher-rate MCS up to 256-QAM 

(MCS index k = 8) and 1024-QAM (MCS index k = 10) with 

52 data subcarriers. The implementation of new multi-user 

multiple-input and multiple-output (MU-MIMO) and Dual 

Carrier Modulation (DCM) is anticipated to provide a 

diversity gain of approximately 3dB, resulting in an 

extension of the safety range. In the MAC layer, the channel 

access protocol adopts an enhanced distributed channel 

access (EDCA) method with carrier sense multiple access 

with collision avoidance (CSMA/CA). To improve the 

reliability of safety messaging, in view of the high 

transmission rate and high channel bandwidth, IEEE 

802.11bd adopts an adaptive retransmission scheme where 

the number of retransmissions Nrp ranging from 1 to 3 is 

dynamically changed with the measured occupancy of the 

channel. The use of high data-rate communication 

technologies in IEEE 802.11 driven VANETs has the 

potential to support numerous safety services in both human 

driving and autonomous driving, which were previously 

uncertain due to their high QoS requirements. 

    Our research in this paper focuses on Basic Safety 

Messages (BSMs) services.  BSMs are broadcasted by each 

vehicle in the VANET regularly to keep drivers or other 

vehicles alert about the status of nearby vehicles. It is evident 

that these safety-critical services are time-sensitive and 

necessitate high reliability. The corresponding QoS 

requirements are listed in [5]. Interferences from 

transmissions of other nodes, high mobility of vehicles, 

unfavorable multi-path fading/shadowing channels, and 

channel additive noise are the primary factors that deteriorate 

the QoS of BSM broadcast in VANETs. 

B. System Model and Metrics for Bayesian Optimization 

To facilitate the optimization of IEEE 802.11 VANET for 

safety messaging, we need to have a good understanding of 

the communication system and channels. Mathematically, 

given a communication parameter set Sp and a QoS set, an 

immediate mapping from the parameters to the QoS metrics 

QoS=f(Sp) is needed, which can be derived from either the 

analytical model for IEEE 802.11 broadcast ad hoc networks 

[6], the simulation model [7], or real-time measurements. For 

the BSM related safety services, Sp={Pt, k, λ, Nrp}, where Pt 

is the node transmission power, k is the MCS index, λ the 

message generation rate, and Nrp is the number of message 

repetitions in one transmission. QoS = {PRP, ED, CBR}, 

where the three main QoSs (PRP, ED, and CBR) are defined 

as follows. 

First, the Packet Reception Probability (PRP) is defined 

as the probability that the receiver will successfully decode a 

packet from a source node that has a distance ds from the 

receiver. Second, the packet transmission delay (ED) is the 

average time taken by a packet from its generation to its 

successful reception by other nodes in the communication 

range. Third, the channel busy ratio (CBR) is a percentage 

which indicates how busy the channel is at a certain time. The 

formula for CBR is:  

                𝐶𝐵𝑅 = 100% ×
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑎𝑠 𝑏𝑢𝑠𝑦

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 .         (1) 

In this paper, we assume that the above mapping is known 

and derived. For detailed understanding of the 

communication systems for safety applications and 

derivation or data collection of the mapping, please refer to 

the related references [6] [7]. 

III. STRUCTURE AND IMPLEMENTATION OF THE BAYESIAN 

OPTIMIZATION WITH CONSTRAINTS USING DLNN 

A. Objective and Formulation of Optimization Problem 

   This paper aims to achieve dynamic, real-time tuning of the 

parameters of the VANETs communication network. DLNN 

based Bayesian Optimization methods are chosen to meet 

this requirement and achieve fast and reliable optimization.  

   Consider a VANET where each node is equipped with 

IEEE 802.11 OFDM communication capability and transmits 

safety related BSM messages regularly with rate λ to its one-

hop neighbor(s) in broadcast mode. The carrier sensing range 

of each node is denoted as rCS, the node density is denoted as 

β, and the IEEE 802.11 backoff window size is denoted as 

W0. The safety messages are received by all nodes within the 

transmitter's Region of Interest (ROI) based on the signal-to-

interference and noise ratios (SINRs) measured in real-time. 

The primary factors that impact the QoS of the network are 
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interferences and multi-path fading/shadowing, which can be 

characterized by cumulative density function (CDF) of SINR: 

FSINR|d(θ) as a function of SINR threshold θ at a given distance 

d and probability density function (PDF) of node receiving 

power Prx: 𝑓𝑃𝑟𝑥|𝑑(𝑥) [6]. 

As the communication environments and safety 

applications in VANETs are subject to constant change, a 

fixed communication parameter configuration may result in 

inadequate QoS or ineffective use of communication 

resources. An optimization platform combining Bayesian 

optimization and a meticulously configured DLNN is 

proposed to adaptively adjust the communication network 

parameters for sufficient and efficient use of the 

communication resources.  

Then, the optimization problem can be formulated as 

follows. Given a mapping from the communication 

parameters Sp to QoS, search through the parameter set to 

find the best combination set so that CBR reaches to its 

minimum under the constraints that both the reliability and 

transmission delay meet the requirements for the given safety 

application, which can be expressed as 

min
𝑆𝑝

𝐶𝐵𝑅  

         s.t. 𝑃𝑅𝑃(𝑅𝑜𝐼, 𝑆𝑝) ≥ 𝜉𝑝, ED≤ 𝜉𝑑, 𝑆𝑝 ∈  𝑆𝑐𝑝,              (2) 

where 𝜉𝑝 is the minimum PRP that meets QoS requirements, 

and 𝜉𝑑 is the maximum ED that meets QoS requirements. 

B. Structure and Implementation of Constrained Bayesian 

Optimization with DLNN 

The Bayesian Optimization is a conventional 

optimization method when the function to be optimized 

becomes gradient evaluation-difficult or when the evaluation 

process takes a long time or a lot of resources. The framework 

of Bayesian Optimization in the context of can be formulated 

as the following expression: 

                               𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈𝑆𝑐𝑝

𝑓(𝑥),                                                   (3) 

where the 𝑥 = 𝑆𝑝 ∈ ℝ𝑑. x* is the optimal set of Sp. Typically, 

the d, namely the dimensions of the optimization objective, 

should ideally be less than 20 so the Bayesian Optimization 

can be conducted successfully [5]. The centerpiece of 

Bayesian Optimization is the use of a Gaussian Process (𝒢𝒫) 

to fit the gradient evaluation-difficult function and to find the 

predicted value of the input x by the fitted function. Complete 

Bayesian Optimization consists of two main components: 

Acquisition Function and Surrogate Function. After 

obtaining the samples, the surrogate function in the 

optimization algorithm will use a Gaussian process to 

generate a probability distribution. This computationally 

convenient probability distribution will be used as an 

alternative to the function to reduce the time required for 

optimization. The role of the acquisition function is to find 

the point at which the optimal value is most likely to exist at 

each iteration. 

 
Fig. 1. Flowchart of DLNN based Constrained Bayesian Optimization 
 

    Figure 1 exhibits the entire process of the proposed 

constrained Bayesian Optimization. First, the sampled 

analytic model f(x) = CBR(Sp) needs to be specified at each 

iteration. Next, the inequity constraints in Eq. (2) are required 

to be incorporated into the Bayesian optimization process.  

Although there were several approaches [5], [9] to change 

surrogate function to implement QoS requirement constraints 

in acquisition function, they added more computation load 

and risk of low reliability when searching for a minimum 

CBR. In this paper, we propose to replace the analytical 

model with a DLNN for the mapping f(x). There are two 

reasons for making this change. First, the constraints can be 

naturally incorporated into f(x) if the DLNN is trained on data 

that is modified such that CBR that does not meet QoS 

requirements is given a suboptimal value. Several different 

suboptimal values were tried, but it was found that replacing 

CBR values that did not meet QoS requirements with a value 

of 1 was most effective. In this way, manipulation and change 

of internal structure of Bayesian algorithm can be avoided. 

Second, with parallel and generalization capability of DLNN, 

the scale of data sampling and generation can be reduced 

while maintaining the same searching precision. Therefore, 

the searching process can be sped up. Third, the DLNN can 

be retrained with relative ease to adapt to the changes of 

wireless channels and vehicular traffic environments. 

    To build a framework of DLNN-driven Bayesian 

Optimization, data pairs for training the DLNN are collected 

and sampled from running analytic models, simulations, or 

real-time measurements. Then, the collected data is sorted to 

keep the data pairs that meet the QoS requirements and 

replace the CBR value of data pairs that do not meet the QoS 

requirements with a value 1, thus shaping a new standardized 

training data set {CBR, Sp} | QoS > QoSreq & {CBR = 1, Sp} 

|QoS ≤ QoSreq, where QoSreq is defined as the QoS 

requirements, such that 𝑃𝑅𝑃(𝑅𝑜𝐼, 𝑆𝑝) ≥ 𝜉𝑝 , ED≤ 𝜉𝑑, 𝑆𝑝 ∈

 𝑆𝑐𝑝 . This training data is created to develop a neural network 
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that will only return minimum values of CBR given that the 

QoSreq is met. The data is used to train a DLNN to accomplish 

the following mapping: 

                         𝐶𝐵𝑅 = 𝑓𝐿(𝑆𝑝).                                     (4) 

     Once the DLNN training is completed, the trained DLNN 

fL(x) is used to replace f(x) in Eq. (3). The Bayesian algorithm 

is called to set up Gaussian surrogate function and acquisition 

function to find the optimal point x*. Since the DLNN 

approximates f(x), there is the rare possibility that the 

optimized x* set leads to a situation where the QoS 

constraints are not satisfied due to possible mapping errors or 

a low sampling rate. To deal with this possible situation and 

assure the robustness of the optimization, a shaking scheme 

is implemented in case x* fails to meet the QoS requirements. 

The shaking scheme is to alter the values in the set x* within 

a small range according to physical meaning of the respective 

parameters so that the errors from DLNN are complemented.  

C. Implementation of Bayesian Optimization Algorithm 

In this paper, the VANETs communication parameters to 

be optimized {𝑃𝑡, k, λ, Nrp} is converted to {γ, k, λ, Nrp}, 

where a tunable parameter γ is a coefficient indicating the 

power magnitude of each transmitting node in the 

communication network. 𝑃𝑡 = 𝛾𝑃𝑛𝑟, where Pnr is a nominal 

reference transmission power. In contrast to the other discrete 

integer parameters k, λ, and Nrp, the value of γ is a continuous 

variable.  

     The entire VANET communication parameter DLNN 

based constrained Bayesian Optimization algorithm is 

composed of two sub algorithms. Algorithm 1 runs system 

models to generate data pairs and DLNN training for 

mapping the analytic model and QoS function. By entering 

the given four communication network parameters, the 

functions will return the Channel Busy Rate and the judgment 

result of the qualification condition. Algorithm 2 conducts 

the constrained Bayesian optimization.  

   As demonstrated in the pseudo code for Algorithm 1, the 

analytical model accepts communication and network 

parameters, along with channel fading and shadowing 

characteristics, which are represented as 𝑓𝑃𝑟𝑥|𝑑(𝑥)  (which 

can be acquired from theoretical equation for typical 

vehicular communication channel or measured and 

statistically summarized from real channel measurements). 

Going through the adjustable parameters in their possible 

value ranges, the model is run to produce a set of mapping 

data: {Sp, QoS}. As the data set is being generated, a data 

preprocessing scheme is applied to shape a new standardized 

training data set {CBR, Sp}|QoS > QoSreq & {CBR = 1, 

Sp}|QoS ≤ QoSreq. To assure fast convergency of the learning 

and to maintain balance between accuracy and generalization 

capability of the DLNN model, we elaborate on and come up 

with an effective DLNN configuration that fits our Bayesian 

Optimization structure. Based on the deep learning principle 

that deeper and wider neural networks with random 

initialized weights and enough distance between training 

patterns can be trained with high precision and generalize 

better, we carefully configure a DLNN model using Python’s 

TensorFlow library to configure a regression model with four 

inputs (γ, k, λ, Nrp) and one output (CBR) that feed into two 

hidden layers with 128 and 32 neurons in each individual 

layer, respectively. In the DLNN, ReLU is selected as the 

activation function for the layers. The ADAM optimizer is 

selected as the training optimizer for the DLNN; The Mean 

Absolute Error (MAE) function is chosen for the loss 

function in the training process. In addition, the 

preprocessing schemes described previously can assure 

satisfactory distance between the training samples. All 

weights in the DLNN are initialized with random numbers 

generated from Gaussian distribution with mean of 0 and 

variance of 0.0001. Furthermore, L2 regularization and 

dropout strategies are introduced to overcome overfitting 

while keeping sufficient precision. 

     Algorithm 2 is the main body of DLNN-based Bayesian 

Optimization. The program will randomly generate several 

sets of parameters {γ, k, λ, Nrp} to sample a small range of 

the analytic model. Given the computational complexity of 

the model, in our experiments, we set the initial number of 

samples to 5. These initial sampling points will include the 

size of the CBRs and the results of the judgments on the 

constraints. Subsequently, two 𝒢𝒫 models will be fitted to 

the CBRs and constrain results, respectively. These two 𝒢𝒫 

models will replace the computationally complex analytical 

model for the optimization search. According to the 

characteristics of 𝒢𝒫, the initial Surrogate Function will only 

be fitted with high accuracy around the sampling points. To 

approach the actual optimal solution, the Surrogate Function 

needs a new sampling point to update its model. This 

sampling point should be the optimal solution in the current 

Surrogate Function. Thus, the algorithm will find the set of 

parameters and bring this set of parameters into the analysis  

Algorithm 1 Data Generation and DLNN Training   

1: Initialization: variables range of γ, k, λ, Nrp 

2: for parameters in ranges Sp and rCS, β do 

3:         input Sp, rCS, β, and W0 into the QoS generator model; 

and  

4:         execute the model to derive PRP, ED, CBR 

5:         return the results as mapping data 

6: end for 

7: generate mapping data: {PRP, ED, CBR}=f(𝛾, 𝑘, 𝜆, 𝑁𝑟𝑝) 

8: preprocess and standardize data{CBR| QoS>QoSreq, Sp} 

9: regroup and split into the training/validation data  
10: build DLNN and train by following parameters: 

11: define inputs={γ, k, λ, Nrp}, output={𝐶𝐵𝑅} 

12: add layers.GaussianNoise(0.001)(inputs)  

13: add layers.Dense(64, activation= 'relu', 

kernel_regularizer=tf.keras.regularizers.L2(0.001))(inputs) 

14: add layers.Dense(128, activation='relu')(x) 

15: add layers.Dense(32, activation='relu')(x) 

16: add outputs= layers.Dense(1)(x) 

17: compile model with optimizer=ADAM, Loss=MAE with L2 

regularizer, Metrics=accuracy 

18: train model with data, epochs=150,  batch size=250;    

19: return DLNN fL(Sp) model from training 

20: searching the minimum CBR from training data as a local 

minimum 
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function to obtain the evaluation point for updating the 𝒢𝒫 

model. After a certain number of iterations, the optimal 

solution found on the 𝒢𝒫 model will be the actual optimal 

solution, which indicates the success of the optimization.  

IV. NUMERICAL RESULTS AND DISCUSSIONS 

To test the effectiveness of the proposed scheme and 

compare it with the previous optimization approaches, the 

same communication network parameters for VANET with 

the same slow vehicle warning (SVW) safety application [5] 

are selected and then run the program in a Google Colab 

platform. To keep this paper self-contained, the 

communication network parameters in our experiments and 

the QoS requirements for the SVW safety application are 

listed in TABLE I and TABLE II, respectively. Among the 

communication parameters to be optimized, the 

communication transmission power parameter γ  is a 

continuous variable taking values in the range of 0 to 10. The 

other parameters: k (6~10), λ (2~20), and Nrp (1~10) are 

integers. The searching program via the DLNN and Bayesian 

Optimization will be called to find the communication 

parameter set that minimizes the channel busy rate (CBR). 

Figure 2 shows the convergence of the deep learning 

neural network for function mapping f(x) = CBR(Sp). The 

training data is provided by running the stochastic model. 25 

percent of the data generated from the model is used for the 

purpose of validation. From Figure 2, we can see that both 

the loss values and the validation error values decrease 

consistently as the training process continues. After 100 

epochs, the average loss value is 0.0052 and the average 

validation error is 0.0055, which indicates that the neural 

network has successfully learned the function mapping f(Sp) 

with sufficient accuracy and generalization capability.      

To show the advantages of the proposed optimization 

scheme, three typical optimization algorithms for searching 

the optimal parameters are compared: the proposed 

combination of deep learning neural network and Bayesian 

optimization algorithm, the constrained optimization scheme 

in [5], and a traditional grid search algorithm [10]. We set 

node density to 0.2 or 0.3 nodes/m, and Bandwidth to 20 or 

120MHz. The three experimental results with the 

optimization run times are shown in TABLE III. For different 

values of bandwidth and density, 200 iterations are   

performed for each optimization search. The experimental 

results in TABLE III show that our deep learning-based 

optimization algorithm can find an optimal solution close to  

TABLE I Communication parameter settings 

Parameters  Values Parameters Values 

Average sensing 

range 𝑟𝐸  
500 m 

Packet generation 
rate λ 

2~20 packets/s 

Slot time 𝑡𝑠 13 µs  No. of subcarriers 52 

Preamble duration       4 µs Bandwidth BW 10~160 MHz 

AIFS  64 µs Packet length PL 1600 bytes 

CW 𝑊0   2~1024 Node trans. power 𝑃𝑡  0~10 

Symbol duration    

𝑡Sy 
1~8 µs 

 MCS index k 6~10 

Coding rate r ¾, 5/6   Packet Rep. no. Nrp 1~10 

MAC header 64 bits  Node density β 0.1~0.3 v/m 

 

TABLE II QoS Requirements for SVW safety applications 

Safety Apps  SVW 

ROI（𝑑𝑅𝑂𝐼） 
 100 m 

Tolerance Delay time 𝜉𝑑 

 

  

0.01 s 
 

 

APP probability requirement (𝜉𝑝)  99.9% 

 

 

Fig. 2. Training and validation loss percentage of the DLNN plotted 
against the number of epochs used to train the DLNN to replace the 

function f(Sp). 

 

 

 

Algorithm 2 DLNN based Bayesian Optimization 

Procedure 

1: Define the ranges for the parameter γ, k, λ, and Nrp 

2: Generate some initial parameter sets Sp 

3: Run DLNN model fL(Sp) with initial sets and find results 

4: Fit Gaussian process (𝒢𝒫) regression model for CBRs  

5: Compute the 𝒢𝒫 predictions to find the current       

optimal CBR in the prior parameter sets 

6:         Generate a list of random parameter sets     

7:         Compute the acquisition function 

8:         Find the minimum CBR and its parameter set  

9:         Compute the actual CBR and parameter set by 

running a general model CBR = fL (x*) 

        Add this parameter set into the prior parameter sets 

10: Find the minimum from the CBR list and corresponding 

parameter set x* 

11: If (f (x*)<QoSreq) do 

12: decide shaking ranges of 4 parameters: δ1, δ2, δ3, δ4 

13: for j=1 to 4 

14: compute {QoS, CBR} = f (xj*±𝛿𝑗 , 𝑥𝑖  (𝑖 = 1,4 𝑎𝑛𝑑 𝑖 ≠

𝑗)) 

15: end for 

16: find minimum CBR and parameter set x’* such that 

f(x’*)> QoSreq  

17: otherwise extend the shaking range, redo shaking and 

checking 

18: end do 

19: find the true global optimal solution to CBR 
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Fig. 3. Pure Bayesian optimization (red) compared with neural network 

enhanced Bayesian optimization (blue) 

 

the grid search in most cases but in a much shorter time 

compared with other two optimization algorithms (less than 

50 seconds for the proposed optimization scheme vs. less 

than 100 seconds for restricted Bayesian Optimization vs. 

more than 500 seconds for the Grid optimization), which 

reflects the superiority of our optimization scheme in terms 

of optimization efficiency. In other words, the proposed deep 

learning-based Bayesian Optimization algorithm is more 

suitable for real time optimization of vehicular 

communication systems.  

    In Figure 3, the Bayesian optimization process is run for 

100 iterations, one is the restricted Bayesian optimization 

using the QOS function (outlined in red) [5], and the other is 

our proposed deep learning-based Bayesian optimization 

using the neural network that replaces the QOS function 

(outlined in blue). As made apparent by the graph, the 

Bayesian optimization function can run much faster when it 

calls the neural network as opposed to calling the QOS 

function. The reason for the observation is that the neural 

network with high mapping accuracy and generalization 

capability in the Bayesian model achieves the prediction of 

the validity of the communication parameters while 

collecting the optimal values under given constraints. 

V. CONCLUSIONS 

In this paper, a new approach to find optimal parameters 

of IEEE 802.11 vehicular communication networks using 

constrained deep learning-based Bayesian Optimization is 

proposed and implemented. The main advantages of the 

method are the inclusion of constraints in the optimization 

via training a DLNN with generalization capability to replace 

the mapping function for Bayesian optimization. The data for 

the function learning could be collected from analytic models 

or real-time measurements, which are carefully preprocessed 

using normalization and manual CBR modification to 

facilitate fast and efficient optimization process. The 

numerical experiments show the effectiveness and 

adaptability of the optimization scheme under various 

network configurations and scales.  Compared with other 

similar search algorithms, this scheme can stably converge to 

the optimal solution in real time significantly quicker than 

other schemes. Transmission speed and reliability is critical 

to safety messaging in VANET systems as hazards and 

warnings need to be transmitted in real time. This core thread 

of the scheme could be generalized and applied to many 

optimization problems which require the use of constraints 

and those with high computation complexity in the future. 
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TABLE III Comparison of optimization algorithms  

Density 0.2 nodes/m 0.3 nodes/m 0.2 nodes/m 

Bandwidth 20 MHz 20 MHz 120 MHz 

 Neural 

Network 
Bayesian Grid 

Neural 

Network 
Bayesian Grid 

Neural 

Network 
Bayesian Grid 

time 40s 85s 574.39s 45s 90s 572.74s 45s 85s 657.87s 

min CBR 0.0168 0.0175 0.0168 0.02635 0.0272 0.0263 0.0022 0.0022 0.0021 

𝛾 6.8 2.644 6.8 9 3.367 8.9 1.14 2.202 0.9 

k 10 8 8 10 8 10 10 10 10 

𝜆 1 1 1 1 1 1 1 1 1 

Nrp 1 1 1 1 1 1 1 1 1 

PRP 0.9991 0.9993 0.999 0.999 0.9990 0.9990 0.9997 0.9997 0.9992 

ED 0.0004 0.00043 0.0004 0.0004 0.00046 0.0004 5.5E-05 5.6E-05 6.0E-05 
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