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Abstract—Honeypot defenses are pivotal for safeguarding the
Industrial Internet of Things (IIoT), notably the Advanced Me-
tering Infrastructure (AMI), against cyber threats. The success of
AMI defense relies on the strategic deployment of small-scale
power suppliers (SPSs) and their interaction with traditional
power retailers (TPR). Existing methods require exhaustive infor-
mation exchange, which is not feasible. Prior studies also neglected
the competitive aspect among the SPSs in task allocation. Our
paper introduces a Stackelberg game model to address TPR-SPS
interactions and SPS competition comprehensively. Our proposed
approach stands out by eliminating the need for prior deployment
and data sharing. It leverages the multiagent deep deterministic
policy gradient (MADDPG) algorithm, centralized training, and
distributed execution, effectively adapting to changing environ-
ments. Without relying on historical data, each SPS actively learns
from its surroundings. Our simulations validate the efficiency of
this novel approach.

Index Terms—Smart Grids, AMI, DRL, Honeypots Deploy-
ment, Stackelberg Game, MADDPG

I. INTRODUCTION

The smart grid (SG) power system is advancing to accom-
modate the requirements of the industrial Internet of Things
(IIoT), such as smart homes [1]. Households, by installing
wind turbines, have evolved into small-scale power suppliers
(SPSs), reducing the load on traditional power retailers (TPRs)
by injecting energy into the grids [2]. This has broadened
the reach of advanced metering infrastructure (AMI), an SG
cornerstone, across both SPSs and TPRs.

The intricate and interconnected architecture of SG and the
integration of online devices render it susceptible to many cyber
threats. Such vulnerabilities may emanate from legacy software
or systems [3], [4]. The inherent complexities of SGs pose
challenges to promptly detecting and mitigating these potential
threats. Given these vulnerabilities, the entire power system’s
integrity becomes precariously balanced. Consequently, there is
a compelling necessity to employ proactive defensive measures,
such as deploying honeypots. Honeypots strategically entice
potential attackers, serving as decoy systems and facilitating
the assessment of their methodologies and tactics while safe-
guarding pivotal assets [5].

Within the domain of SG, the strategic placement of honey-
pots within the SPS infrastructure is imperative for achieving

thorough defense coverage. Consequently, TPRs must offer
proper incentives to SPSs to facilitate honeypot deployment,
thereby enabling a collaborative paradigm to enhance grid
security [6]. The reward design proposed for the SPSs should
be proportional to their respective contributions, considering
the caliber and magnitude of the data shared. However, given
the prevalent information asymmetry, TPRs grapple with delin-
eating appropriate rewards, especially in light of potential data
misrepresentation by SPSs [7].

The literature contains various techniques to encourage end-
users for honeypot deployment [6], [8]. For instance, [9],
[10] utilized contract-theory-based methods for data relay
incentives, while [2] focused on a contract-based incentive
for direct energy trading in SGs. A recent approach by Tian
et al. [11] considered information asymmetry for honeypot
incentives. However, these methodologies overlook the specific
nature of SGs, especially the complexities tied to SG services
and protocols. An individual SPS cannot host honeypots for
every service (i.e., communication protocols within SGs) due
to resource constraints. Specifically, the heavy dependence
on extensive data sharing, overlooking SPS inter-competition,
and inadequate attention to historical data and edge device
constraints in security protocols are evident. Recognizing this,
TPRs ought to pinpoint specific services for honeypot deploy-
ment, subsequently choosing qualified SPSs based on their
traffic volume.

Motivated by these observations, our work introduces a novel
solution addressing these challenges, accounting for TPR-SPS
interactions, resource constraints, and the heterogeneity in
SG communication protocols. Our approach, formulated as a
multistage Stackelberg game, emphasizes a strategic collabo-
ration between TPR and SPSs, relying on a multiagent deep
deterministic policy gradient (MADDPG) methodology. Key
contributions include:

• A Stackelberg game-based approach encapsulating the
dynamics between TPR and SPSs, factoring in resource
constraints and communication diversities.

• An adaptive strategy that minimizes dependence on prior
information, aligning with edge device capabilities.
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Fig. 1: Micro-grid Architecture for the considered system
model

• Employing MADDPG, a responsive deep reinforcement
learning (DRL) strategy adjusted to environmental shifts
and uncertainties.

• A self-learning aspect, negates the need for prior training
data, with each SPS acting as an independent learning
entity.

• Validated efficacy of our methodology through simula-
tions, emphasizing its practical viability.

The forthcoming sections provide an in-depth exploration
of our proposed system model, problem formulation, and
solutions, followed by performance evaluation and conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, an AMI consists of a utility company
or TPR and multiple K SPSs where K = {1, 2, . . . ,K} are
distributed in different areas or regions R = {1, 2, ..., R}.
Initially, we specify the TPR and SPS models and show
the interaction procedure. The SPSs deploy the honeypots to
capture network traffic cyberattacks, wrap the defense data, and
then send it back to TPR via the network. Then, the SPSs
receive either a monetary payment, a reduction in their bill,
or an upgrade to their defense model. It is worth mentioning
that the data shared by SPS is an information asymmetry, as
the SPSs can realize their valid defense data (VDD), whereas
the TPR cannot. The VDD (unknown attack interaction log)
is stored in the database along with existing detection methods
and typical defense logs. This information is continuously used
to enhance the security of the AMI system by implementing
new defense mechanisms.

Due to the limitation in the resources equipped with the
edge devices in SG networks (i.e., smart meter and IEDs) and
the several services used for communication between different
entities in SG (i.e., GOOSE, R-GOOSE, Distributed Energy
Resources – IEC 61850-7-420, Electrical vehicle charging –
IEC 61851, Power electronics for electrical transmission and
distribution systems – IEC 61954, etc.), a single SPS can

not deploy a honeypot for all services. Therefore, the utility
company or TPR should identify the specific services they
aim to improve their defense models and then choose the
most suitable SPS to run a single service or several services.
Specifically, the TPR specify the services N = {1, 2, . . . , N}.
For each service, a predetermined number of SPSs is selected.
Each SPS k ∈ K has limited resources to run the honeypot and
report the collected logs. We assume that the TPR can ask the
SPSs to run the honeypot for a specific time to minimize the
TPR’s cost. We can summarize the interactions between the
SPSs and TPR as follows:

• As shown in Fig. 1, the TPR or utility company determines
the service (i.e., protocol) that needs to collect information
about it, the time, and the allocated budget.

• The control center then announces to all SPSs in different
regions.

• Each SPS determines its price and time to run the honey-
pot and upload the collected logs.

• The control center selects the best candidates to perform
the deployment task, collects the logs and sends them back
to the TPR.

A. Stackelberg game-based model

Game theory has been investigated as a pertinent tool for
investigating decentralized decision-making among strategic
players in various optimization problems [12]. One of the es-
sential tools is the Stackelberg game, a new tool for simulating
interactions between leaders and followers. It is widely used
for optimization problems, such as computation offloading,
resource trading, and energy transfer, to maximize or minimize
utility between leaders and followers. In particular, players in
the Stackelberg game model are leaders and followers. The
leaders devise a strategy, and the followers act in accordance
with it. Leaders (i.e., the TPR) and followers (i.e., the SPSs)
seek to maximize their own rewards and utility in the game.
The Stackelberg game can be modeled as a multi-stage game
in which various decision-makers make decisions at different
stages simultaneously. In our proposed approach, the TPR
finds the optimal strategy to maximize its utility. Then, the
SPSs account for observing the TPR’s strategy and maximizing
their utilities. Considering the competition amongst all SPSs,
the optimum reaction of every SPS is determined using a
MADDPG algorithm. Specifically, each SPS interacts with its
environment, trying to learn a policy that maximizes its long-
term profits with no prior knowledge about the actions of
others. In our scenario, we can define the Stackelberg game
as follows: First, the TPR and the SPSs are players in which
the TPR is the leader, and the SPS are the followers. Second,
for the adopted strategy, the SPS’s strategy is to specify the
cost based on the honeypot deployment costs, while the TPR’s
strategy aims to select the best SPSs based on its budget. It
is worth noting that if the cost is high, the TPR may decide
to upgrade the model through security retailers. Third, for the
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utility, the functions for SPSs, TPR, and AMI are explained
in the following subsections.

1) SPS’s Utility
For each service n, the time purchased from the SPS to run

the honeypot is denoted by τnk . Then, the utility of each SPS
can be given as follows:

φk (pk, τk) = pk
∑
n∈N

τnk − cnk , ∀k ∈ K, (1)

where pk is the price determined by SPS k, τk is the to-
tal time spent running the honeypot for all services where
τk = {τnk }n∈N , and cnk is the cost of running the honeypot
for service n. As seen in the following sections, each SPS
should ensure a positive utility.

2) TPR’s Utility
Accordingly, we can calculate the utility of the TPR for each

service as follows:

Φn (τn, c) = θn

(∑
k∈K

ϑn
kτ

n
k

)
−
∑
k∈K

pkτ
n
k , ∀n ∈ N (2)

where τn = {τnk }k∈K, c = {pk}k∈K , ϑn
k denotes the quality

of data uploaded by SPS k for service n and θn is the utility
function, showing the quality of collected data for each service.
It is worth mentioning that θn is a concave function showing
an increasing return rate as quality-weighted collecting time
increases.

3) AMI welfare
Finally, as the TPR and SPSs compose the AMI, its welfare

[13] is the summation utilities of both, which can be given by:

Φ (τ , c) =
∑
k∈K

φk (pk, τk) +
∑
n∈N

Φn (τn, c)

=
∑
n∈N

θn

(∑
k∈K

ϑn
kτ

n
k

) (3)

B. Problem Formulation

In this paper, we formulate our main problem as a set
of optimization challenges, encompassing the AMI welfare
optimization, the TPR optimization, and the SPS optimization
problems. First, the AMI aims to maximize the total social
welfare payoff (i.e., total utility for the TPRs and SPSs). Given
the cost c, the problem can be posted as:

P1 : max
τ

Φ (τ , c) (4)

subject to.

C1.1 :
∑
n∈N

τnk ≤ tk, ∀k ∈ K (5)

C1.2 :
∑
k∈K

pkτ
n
k ≤ bn, ∀n ∈ N (6)

C1.3 :
∑
k∈K

τnk > 0 (7)

C1.4 : tk > 0, ∀k ∈ K (8)
C1.5 : τnk > 0, ∀k ∈ K (9)
C1.6 : bn > 0, ∀n ∈ N (10)

where tk is the time in which the SPS k is available to perform
the deployment tasks, and bn is the budget adopted for each
service n. C1 ensures that the time dedicated for all services by
SPS k does not exceed its time budget, while in C2, the amount
of purchased time for all SPSs for any given service has to be
aligned with the allocated budget. The constraint, C3, ensures
that at least one service is assigned per SPS. The constraints
from C4 to C6 are non-negative constraints for tk, τk, and bn,
respectively. It is worth noting that P1 can be reformulated to
maximize the utility of each TPR as follows:

P2 : max
τn

Φn (τn, c) (11)

subject to.
C2.1 : τnk ≤ tn, ∀k ∈ K (12)

C2.2 :
∑
k∈K

pkτ
n
k ≤ bn (13)

C1.3− C1.5 in P1 (14)

Now, we present the optimization problem on the SPS side in
which each SPS selects the best policy considering the TPR’s
strategy. Mathematically speaking, each SPS aims to maximize
its profit by choosing the best price as follows:

P3 : max
pk

φk (pk, τk) (15)

s.t.
C3.1 : pk ≥ 0. (16)

C3.2 :
∑
n∈N

cnk ≤ Ωk (17)

where the N is a set of services that the SPS k is willing to
run, Ωk is the resource capabilities.

As we can see, P2 and P3 can be solved as optimization
problems if all prior information is available. However, it is
difficult to determine the optimal prices beforehand, and the
quality of traffic data collected may vary due to the constantly
changing network environment. Additionally, ensuring fair re-
wards for all participating SPSs is crucial. These challenges
make it essential to use DRL to tackle these challenges effec-
tively.

III. DRL-BASED FRAMEWORK

Utilizing DRL, the framework aids the SPSs in optimizing
utility based on feedback from their environment. Meanwhile,
the AMI welfare relies on implicit DRL feedback. In this
system, agents (TPRs and SPSs) make decisions depending
on the observed experiences of other entities. At every time
interval t, agents make decisions to adapt to environmental
shifts. The overarching objective is to bolster both TPR and
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SPS utility by refining their decision-making strategies over
time.

For each player k ∈ K, observations Ok(t) form part of
state St at each time slot t. The subsequent actions the players
take give rise to rewards from the environment. The goal is
to develop a policy maximizing long-term rewards dependent
on state spaces and actions. We define the state space, action
space, and reward as:

• State Space: Denoted as S = {S1, S2, . . . , SK}, with
each SK being the local state of a given SPS k.

otk = {pt−1
k , τ t−1

k , . . . , pt−T
k , τ t−T

k }. (18)

• Action Space: At state st, the appropriate action at is
chosen.

atk = µk

(
otk|θ

µ
k

)
. (19)

• Reward Function: For each agent, it is defined as:

rtk = log

(
1 + ptk

∑
n∈N

τ tkn − ctkn
∑
n∈N

τ tkn

)
. (20)

A. MADDPG Technique
Given the complex environment, the MADDPG approach,

emphasizing centralized training with decentralized execution,
is implemented. This method modifies the actor-critic mecha-
nism employing the Deep Q-Network (DQN) paradigm.

1) Actor Network
The actor-network is designed to maximize expected re-

wards. Here, the actor-network policies are parameterized by
ωµ = {ωµ

1 , ω
µ
2 , . . . , ω

µ
K}.

2) Critic Network
The critic network evaluates agent actions in relation to the

expected future rewards, incorporating all states and actions.

Lk =
1

T

T∑
t

(ytk −Qk(o
t,at|ωQk))2, (21)

3) Experience Replay Buffer
Each agent possesses its local experience replay buffer,

storing tuples {sk, ak, rk, s′k}. Policy training uses mini-batch
sampling from this buffer, updating both the actor and critic
networks.

IV. PERFORMANCE EVALUATION

A. Simulation Setup
We consider an AMI with 1 TPR, 9, 10, 15, and 20

SPSs disseminated in different regions, one control center to
coordinate between the TPR and SPS, and 2, 3, 4, and 5
targeted services. The data quality of each SPS is randomly
distributed. Each SPS aims to maximize its profit, so the reward
discount factor is set to 0. We use one input layer, 5 hidden
layers, and one output layer for the actor and critic networks.
For the activation function, we use Relu for all hidden layers
for both actor and critic, and only the Tanh is used for the
output layer of the actor-network.

Fig. 2: Time Allocated for each service amongst all SPSs

Fig. 3: The Prices Given by SPSs

B. Numerical Results

As shown in Fig. 2, the services are assigned to all SPSs
based on their prices. Some SPSs are selected for only one
service. For example, SPS-1, SPS-2, and SPS-3 are assigned
only for service 3. On the other hand, SPS-4 to SPS-8 are
selected for two services. Fig. 3 also shows the prices each
SPS charged to join the services. The SPSs set for multiple
services charge higher prices, while the SPSs selected for only
one service charge lower prices. The allocation of services
to SPSs is influenced by the prices that the SPSs charge to
join. SPSs that charge higher prices are more likely to be
selected for multiple services, while SPSs that charge lower
prices are more likely to be selected for only one task. This
suggests that pricing can effectively allocate tasks to devices in
a decentralized deployment system. It is worth mentioning that
the quality of the reported data plays an essential role for each
SPS selected to run the honeypot for a specific service where
we set the SPSs to report less quality for service 1, and the
system learns the optimal policy, not to select those devices.

Figs. 4a–4c show the time allocated for each SPS deploying
honeypots of different protocols (i.e., services) and sharing the
defense data, which mainly depend on the local data quality
(i.e., weights) and the prices. The significance here refers to the
value or importance of the SPS in the SG network. Therefore,
an SPS with a higher weight collects more valuable data and
provides better insights into attack patterns. The higher the
importance of the SPS, the more influential the honeypot is
at catching attacks’ patterns. However, the budget allocated
to each service also plays a significant role in the quality of
the data collected and the profits gained. We also note that
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(a) Time allocated for Service 1

(b) Time allocated for Service 2

(c) Time allocated for Service 3

Fig. 4: The time allocated for each service, showing the
participation of each SPS and the dedicated time.

the higher budget allows more SPSs to participate, resulting
in better data quality. As a result, the appropriate weights for
each device and allocating sufficient budgets to each service are
critical to achieving optimal outputs when deploying honeypots
across different SPSs, running other protocols, and sharing
the related defense data. This enables TPR to obtain valuable
insights into the attack patterns, detect new threats, and prevent
potential cyber-attacks.

V. CONCLUSION

This paper introduced a Stackelberg game to model TPR and
SPSs interactions in SG networks, addressing device limitations

and communication protocol diversity. Our proposed approach
is robust, needing no prior knowledge of SPSs’ deployment or
sharing decisions. Using MADDPG with centralized training
but distributed execution, our method captures the dynamic
environment efficiently. Crucially, each SPS learns in real-time
without needing historical data. Simulations confirm the effi-
cacy of our approach in guiding SPSs on honeypot deployment
and log-sharing based on their resources and traffic.
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