Power Sensor Networks by Wireless Energy: Current Status and Future Trends

Yuanyuan Yang, Cong Wang and Ji Li

Stony Brook University
Stony Brook, New York, USA
Outline

- Background
- Network architecture and basic principles
- Collect real-time energy information
- Recharge scheduling algorithms
- Integrate wireless charging with mobile data collection
- Future directions
- Summary
Background

- Recently, wireless energy transfer opens up a new dimension in wireless sensor networks and becomes a game-changing technology to power sensors.
- Pioneered by Tesla a century ago, recently the technology enjoys so much popularity due to work of Kurs et. al [1].
- Prototype from MIT lab

Transfer 40W over 2 meters

Through barriers between source and receiver

Background

- Wireless energy transfer provides more reliable and controllable energy source than environmental energy harvesting (e.g., solar, wind)

- Two basic wireless transferring techniques:
 - Electromagnetic radiation: low charging efficiency, only support low-power devices, charging distance up to 1-3 m
 - Resonant magnetic coupling: high charging efficiency, support high-power equipment (e.g., electrical vehicle), charging distance < 1 m

Electromagnetic radiation
Products from Powercast Corp.

Resonant magnetic coupling charges electrical vehicle.
Background

- A wireless sensor network powered by wireless power transfer is referred to as **wireless rechargeable sensor network (WRSN)**
- Radiation-based wireless charging only provides very limited charging capability. It has to operate under FCC regulations of 4W emission power
- Resonant magnetic coupling is more desirable. It requires a mobile vehicle equipped with a charging device to move around the field, and recharge sensors in close distance
- We focus on resonant magnetic coupling based wireless charging
Outline

- Background
- Network architecture and basic principles
- Collect real-time energy information
- Recharge scheduling algorithms
- Integrate wireless charging with mobile data collection
- Future directions
- Summary
Basic Components in WRSN

SenCar: Multi-functional vehicle carrying charging coils with powerful battery

Head node: aggregates energy information from each sub-area

Base station: provides maintenance and support, commands the SenCar

Area: Geographical organization of nodes, hierarchically divide network into different areas
Basic Principles for WRSN

- To achieve perpetual network operation, energy neutral condition must hold:
 \[E(T) < R(T) + E_I \]
- For any arbitrarily long time period, energy consumed in the network \(E(T) \) should be less than energy recharged into the network plus initial energy \(E_I \) from all nodes
- Question: What is the minimum number of SenCars required to maintain energy neutral condition?
Basic Principles for WRSN

- How to calculate the number of SenCars required [11]
- Estimate an upper bound of $R(T)$ when SenCars keep recharging sensor nodes without any idle time. $R(T)$ depends on the recharging rate of sensor’s battery.
- $E(T)$ can be approximated by a Gaussian random variable by computing its mean $\overline{E(T)}$ and variance $\sigma^2(T)$ from the aggregated energy consumption pattern from sensors.
- Energy neutral condition holds with probability:

$$P = \phi\left(\frac{R(T) + E_0 - \overline{E(T)}}{\sqrt{\sigma^2(T)}}\right)$$
Outline

- Background
- Network architecture and basic principles
- **Collect real-time energy information**
- Recharge scheduling algorithms
- Integrate wireless charging with mobile data collection
- Future directions
- Summary
Gathering real-time energy status info is critical for decision making in recharge scheduling.

All previous works ignored when and how energy info is collected.

Due to dynamics of the network (sudden drop of energy level due to external events), overlooking energy info could lead to inaccurate recharge decisions.

For example, recharging a sequence of 10 nodes may require at least 10 hours for Ni-MH batteries, energy on sensor nodes may change dramatically during this period.
Recharge Scheduling – Collect Energy Info

Operations:
1. SenCar sends energy info requesting message (interest)
2. Head nodes on each level receive and propagate the interest message until the bottom level is reached
3. Bottom level nodes receiving interest respond with their energy info (data)
4. Energy info message propagates along the head hierarchy until SenCar is reached
Outline

- Background
- Network architecture and basic principles
- Collect real-time energy information
- Recharge scheduling algorithms
- Integrate wireless charging with mobile data collection
- Future directions
- Summary
Recharge Scheduling

- Objective: Minimize total traveling cost on SenCars and maintain perpetual network operation (i.e., no sensor depletes energy)
- Which node to select next for recharge?
- A weighted-sum online algorithm [11]:
 - Select next node with minimum weighted-sum w_i:
 - $w_i = a L_i + (1-a) t_i$
 - L_i is the residual lifetime of node i, t_i is the traveling time of SenCar from its current position to node i’s position
 - Vary weight parameter a and select a node with the least weight value
Evaluation of Weighted-Sum Algorithm

- Trace of energy consumption and replenishment
- 500 nodes, 2 and 3 SenCars
- Theoretical results: \(S = \lceil 2.41 \rceil = 3 \)
- At least 3 SenCars are needed for perpetual operation
Evaluation of Weighted-Sum Algorithm

Observations:

1. Left Fig: 2 SenCars are not enough. Energy consumption curve steps down around 500 hours, because some nodes deplete energy, and later on, SenCars are not able to restore the energy level on these nodes so the consumption curve stays below the replenishment curve.

2. Right Fig: 3 SenCars are enough. Energy consumption curve also steps down but soon recovered at 500 hours, because nodes are restored by SenCar, showing 3 SenCars are can handle 500 nodes for perpetual operation.
Evaluation of Weighted-Sum Algorithm

- Evaluate nonfunctional nodes for 500, 1000 nodes.
- N=500, S=3; N=1000, S=4 are threshold cases for perpetual operation
- In simulation set-up phase, more overhead is observed

Bursts due to head re-selections

![Graph showing the evolution of nonfunctional nodes and overhead](image)
Recharge Scheduling – Practical Constraints

- Previous work assumed the moving of SenCar is free and SenCar has infinite energy capacity.
- Constraints of SenCar’s recharge capacity, moving cost and node’s dynamic lifetime are important in practice.
- Bringing them all together into a recharge scheduling problem is difficult.
- Formulate the problem into a Profitable Traveling Salesmen Problem with Capacity and Battery Deadlines Constraints.
- Objective: Maximize total energy recharged into sensors minus energy cost on SenCars.
- NP-hard problem (reduced to classic Traveling Salesmen Problem).
Recharge Scheduling – Practical Constraints (Greedy Algorithm)

- A simple *Greedy algorithm*: in each step, SenCars select the node with maximal recharge profit (recharged energy of node less energy cost moving to this node)
- SenCar returns to base station if its own battery is low
- Potential problem with the greedy approach:
 - It may cause SenCar to move back and forth in the field because each time it selects the node with maximal recharge profit. Moving energy cost would be high in this case
 - No guarantee to recharge nodes within their battery deadlines
Recharge Scheduling – Practical Constraints (3-Step Algorithm)

- **3-Step Adaptive Algorithm [12]:**
 - **Step 1:** Adaptive network partition and assign each SenCar to a region for recharge – avoid moving back and forth in the field
 - **Step 2:** Construct Capacitated Minimum Spanning Tress in each region for SenCars
Step 3: Insert nodes that need prioritized recharge back into an established sequence of non-prioritized nodes - each insertion should capture node lifetime constraint.

- Traveling cost comparison of weighted-sum algorithm, insertion-based algorithm and optimal solution.
- Adaptive algorithm performs better than weighted-sum algorithm and is close to optimal algorithm.
Performance of Recharge Algorithms

- **Greedy Algorithm (GA):** when \# SenCars \(m=2 \), 5-15% non-functional nodes. Big spike around 22 days due to recharge capability is temporarily exceeded when sensors request for recharge at the same time.

- 3-step Adaptive Algorithm (AA): when \(m = 2 \), no spike is observed and nonfunctional node is < 10% all the time. When \(m = 4 \), AA can reduce nonfunctional nodes to zero.

![Graphs showing performance of Greedy and Adaptive Algorithms](image)
Performance of Recharge Algorithms

- Compare percentage of time nodes are nonfunctional
- GA – nodes near base station have maximum of 5.14% time in nonfunctional status
- AA – nodes only have maximum 0.9% time in nonfunctional status
- AA also spreads nonfunctional nodes more evenly across the field than GA
Outline

- Background
- Network architecture and basic principles
- Collect real-time energy information
- Recharge scheduling algorithms
- Integrate wireless charging with mobile data collection
- Future directions
- Summary
Integrate Wireless Charging with Data Collection

- Basic Idea: perform wireless charging and mobile data collection by the same SenCar [8,9]
- Advantage: Less manufacturing cost, human labor to command SenCar; mobile data gathering – uniform energy distribution; wireless charging – perpetual operation
- First, select *anchor points* where SenCar performs recharge and collects data from the neighborhood

Example of anchor point selection algorithm

Criteria: Select the nodes with the least energy and guarantee the recharge tour length is under a threshold
Integrate Wireless Charging with Data Collection

- After anchor points are selected, we need to optimize:
 - Data rates – sensors forward towards different anchor points
 - Link flows – determine link flow rates on different links under sensors’ energy budget and link capacity
 - SenCar’s sojourn time – how to allocate the time SenCar stops at different anchor points
- Formulate the problem into an optimization problem
- Objective: Maximize the overall utility on sensor nodes. Utility here refers to the amount of data uploaded from sensor nodes
Integrate Wireless Charging with Data Collection

• A system-wide optimization is performed based on anchor points selected
• Each sensor computes data rates and link flow routing in a distributed manner
• Compare the amount of data gathered with solar harvesting in 24 hours: Wireless charging is not affected by weather dynamics

Wireless charging provides more reliable and stable service since solar harvesting cannot sustain network operation during nighttime.
Outline

• Background
• Network architecture and basic principles
• Collect real-time energy information
• Recharge scheduling algorithms
• Integrate wireless charging with mobile data collection
• Future directions
• Summary
Ultra-fast battery charging technology – researchers have used bio-organic fast charging technology to demonstrate fully charging an iPhone battery in 30 seconds [13]

Example in [13]: Israel researchers demonstrate the latest fast charging technique
Future Directions – Ultra-Fast Battery Charging

- Compared to traditional battery (NiMH) that needs 1-2 hours to charge, SenCars can cover hundreds of nodes in just a few hours.
- Much higher scalability and efficiency.
- It requires some revisions in the existing algorithms: with ultra-fast charging, SenCar’s moving time will be the dominating factor other than recharge time.
Future Directions – Extend Charging Range

- Extend wireless charging range and efficiency using resonant repeaters [14-15]
- SenCar can recharge multiple nodes simultaneously
- Advantage: higher temporal efficiency, SenCar can cover a larger network size

Distribute 15mW energy to 6 loads by 4 repeaters over 2 m [14]

Power a 14W lamp by organizing repeaters into domino form [15]
Future Directions – Echo-Friendly WRSN

- Designing echo-friendly WRSN
- How to provide energy sources for SenCar?
- A hybrid network structure combining energy harvesting and wireless charging
- SenCar periodically returns to base station for battery recharge. Base station is powered by ambient energy source such as solar, wind, etc.
Future Directions – Echo-Friendly WRSN

- Several interesting questions for this new network structure
- Where to place energy harvesting stations is a placement problem (high exposure to energy sources, easy access to SenCars)
- How to achieve balance between energy income and energy consumption
- How to minimize overall cost of network including sensor’s energy consumption, SenCar’s moving cost, charging cost, etc.
Summary

• We have provided an up-to-date review for the current research status in WRSN
 1. Efficient gathering of energy status information
 2. Recharge scheduling problem (with practical constraints)
 3. Integration of wireless charging with mobile data collection

• We have also pointed out several future directions
 1. Ultra-fast battery charging technology
 2. Extending wireless charging range
 3. Designing a green, autonomous, eco-friendly WRSN by combining energy harvesting and wireless charging
References

References

Thank you
Q&A

www.ece.stonybrook.edu/~yang